Revista Multidisciplinaria Perspectivas Investigativas
Multidisciplinary Journal Investigative Perspectives
Vol. 5(especial tecnología), 35-52, 2025
Estructura interna y anisotropía en compresión de elementos 3D impresos con FDM mediante FEM
Internal structure and compression anisotropy of FDM-printed 3D elements using FEM
Jorge Steban Ramírez-Jiménez
Luis Miguel Navarrete López
Jefferson Alberto Porras-Reyes
José Ezequiel Naranjo-Robalino
51
Bandinelli, F., Scapin, M., & Peroni, L. (2024). Effects of anisotropy and infill pattern on
compression properties of 3D printed CFRP: Mechanical analysis and elasto-plastic
finite element modelling. Rapid Prototyping Journal, 30(11), 142–158.
https://doi.org/10.1108/RPJ-11-2023-0385
Birosz, M. T., Ando, M., & Safranyik, F. (2022). Layer adhesion test of additively manufactured
pins: A shear test. Polymers (Basel), 14(1). https://doi.org/10.3390/polym14010055
Buj-Corral, I., Domínguez-Fernández, A., & Durán-Llucía, R. (2019). Influence of print
orientation on surface roughness in fused deposition modeling (FDM) processes.
Materials (Basel), 12(23), 3834. https://doi.org/10.3390/ma12233834
Fallon, J. J., McKnight, S. H., & Bortner, M. J. (2019). Highly loaded fiber filled polymers for
material extrusion: A review of current understanding. Additive Manufacturing, 30,
100810. https://doi.org/10.1016/j.addma.2019.100810
Ginoux, G., Paux, J., & Allaoui, S. (2023). New preparation method of microstructurally and
mechanically standardized PETG specimens by material extrusion additive
manufacturing and machining. Additive Manufacturing, 66, 103471.
https://doi.org/10.1016/j.addma.2023.103471
Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033),
281–297. https://doi.org/10.1098/rspa.1948.0045
Khan, S., Joshi, K., & Deshmukh, S. (2022). A comprehensive review on the effect of printing
parameters on mechanical properties of FDM printed parts. Materials Today:
Proceedings, 50, 2119–2127. https://doi.org/10.1016/j.matpr.2021.09.433
Paul, S. (2021). Finite element analysis in fused deposition modeling research: A literature
review. Measurement, 178, 109320.
https://doi.org/10.1016/j.measurement.2021.109320
Reddy, V., Flys, O., Chaparala, A., Berrimi, C. E., Amogh, V., & Rosen, B. G. (2018). Study on
surface texture of fused deposition modeling. Procedia Manufacturing, 25, 389–396.
https://doi.org/10.1016/j.promfg.2018.06.108
Retolaza, J., Ansola, R., Gómez, J. L., & Díez, G. (2021). Identifying elastic constants for PPS
technical material when designing and printing parts using FDM technology. Materials
(Basel), 14(5), 1–19. https://doi.org/10.3390/ma14051123
Samy, A. A., et al. (2022). Influence of raster pattern on residual stress and part distortion in
FDM of semi-crystalline polymers: A simulation study. Polymers (Basel), 14(13).
https://doi.org/10.3390/polym14132746
Sola, A., et al. (2023). Open challenges in tensile testing of additively manufactured polymers: A
literature survey and a case study in fused filament fabrication. Polymer Testing, 117,
107859. https://doi.org/10.1016/j.polymertesting.2022.107859
Stander, N. A., Basudhar, A., Roux, W., Witowski, K., Eggleston, T., Goel, T., & Craig, K.
(2019). LS-OPT user’s manual: A design optimization and probabilistic analysis ability
for the engineering analyst. Livermore Software Technology Corporation.
https://www.lsoptsupport.com/documents/manuals/ls-opt/lsopt_60_manual.pdf
Tessarin, A., Zaccariotto, M., Galvanetto, U., & Stocchi, D. (2022). A multiscale numerical
homogenization-based method for the prediction of elastic properties of components
produced with the fused deposition modelling process. Results in Engineering, 14,
100409. https://doi.org/10.1016/j.rineng.2022.100409
Trofimov, A., Le Pavic, J., Pautard, S., Therriault, D., & Levesque, M. (2022). Experimentally
validated modeling of the temperature distribution and the distortion during the fused