Estructura interna y anisotropía en compresión de elementos 3D impresos con FDM mediante FEM [Internal structure and compression anisotropy of FDM-printed 3D elements using FEM]
Errata: Se recibió una alerta sobre posible plagio en el artículo titulado "Effects of anisotropy and infill pattern on compression properties of 3D printed CFRP: mechanical analysis and elasto-plastic finite element modelling", de los autores Francesco Bandinelli, Martina Scapin y Lorenzo Peroni. Con el fin de evitar controversias, los autores del artículo "Estructura interna y anisotropía en compresión de elementos 3D impresos con FDM mediante FEM" realizaron cambios en el documento original. El artículo se publicó nuevamente con modificaciones que eliminan la posibilidad de plagio. Se hace esta aclaratoria ya que la información potencialmente plagiada no afectaba las conclusiones del trabajo, tanto en su versión original como en la modificada
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.290Palabras clave:
plásticos, diseño industrial, propiedad físicaResumen
El análisis por Elementos Finitos (FE) es una herramienta clave en el diseño y verificación de componentes impresos en 3D. La correcta caracterización de sus propiedades anisotrópicas y ángulos de ráster permite desarrollar modelos eficientes. Este estudio emplea pruebas de compresión para caracterizar el PLA fabricado mediante FDM, modelando su comportamiento con FE. Se utilizan especímenes postprocesados para minimizar defectos externos del proceso. El modelo elastoplástico incluye una matriz de rigidez elástica, el criterio de fluencia anisotrópico de Hill y la ley de endurecimiento isotrópico de Voce, considerando la secuencia de apilamiento de los ángulos de ráster. El análisis FE, realizado en LS-DYNA, reproduce el comportamiento compresivo del material, capturando la evolución de la tensión y las formas deformadas hasta el inicio del daño. Los mecanismos de deformación y daño dependen de la orientación y ángulo de ráster.
Descargas
Citas
Athale, M., Park, T., Hahnlen, R., & Pourboghrat, F. (2022). Experimental characterization and finite element simulation of FDM 3D printed polymer composite tooling for sheet metal stamping. The International Journal of Advanced Manufacturing Technology, 121(9–10), 6973–6989. https://doi.org/10.1007/s00170-022-09801-0
Bandinelli, F., Peroni, L., & Morena, A. (2023). Elasto-plastic mechanical modeling of fused deposition 3D printing materials. Polymers, 15(1), 234. https://doi.org/10.3390/polym15010234
Bandinelli, F., Scapin, M., & Peroni, L. (2024). Effects of anisotropy and infill pattern on compression properties of 3D printed CFRP: Mechanical analysis and elasto-plastic finite element modelling. Rapid Prototyping Journal, 30(11), 142–158. https://doi.org/10.1108/RPJ-11-2023-0385
Birosz, M. T., Ando, M., & Safranyik, F. (2022). Layer adhesion test of additively manufactured pins: A shear test. Polymers (Basel), 14(1). https://doi.org/10.3390/polym14010055
Buj-Corral, I., Domínguez-Fernández, A., & Durán-Llucía, R. (2019). Influence of print orientation on surface roughness in fused deposition modeling (FDM) processes. Materials (Basel), 12(23), 3834. https://doi.org/10.3390/ma12233834
Fallon, J. J., McKnight, S. H., & Bortner, M. J. (2019). Highly loaded fiber filled polymers for material extrusion: A review of current understanding. Additive Manufacturing, 30, 100810. https://doi.org/10.1016/j.addma.2019.100810
Ginoux, G., Paux, J., & Allaoui, S. (2023). New preparation method of microstructurally and mechanically standardized PETG specimens by material extrusion additive manufacturing and machining. Additive Manufacturing, 66, 103471. https://doi.org/10.1016/j.addma.2023.103471
Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281–297. https://doi.org/10.1098/rspa.1948.0045
Khan, S., Joshi, K., & Deshmukh, S. (2022). A comprehensive review on the effect of printing parameters on mechanical properties of FDM printed parts. Materials Today: Proceedings, 50, 2119–2127. https://doi.org/10.1016/j.matpr.2021.09.433
Paul, S. (2021). Finite element analysis in fused deposition modeling research: A literature review. Measurement, 178, 109320. https://doi.org/10.1016/j.measurement.2021.109320
Reddy, V., Flys, O., Chaparala, A., Berrimi, C. E., Amogh, V., & Rosen, B. G. (2018). Study on surface texture of fused deposition modeling. Procedia Manufacturing, 25, 389–396. https://doi.org/10.1016/j.promfg.2018.06.108
Retolaza, J., Ansola, R., Gómez, J. L., & Díez, G. (2021). Identifying elastic constants for PPS technical material when designing and printing parts using FDM technology. Materials (Basel), 14(5), 1–19. https://doi.org/10.3390/ma14051123
Samy, A. A., et al. (2022). Influence of raster pattern on residual stress and part distortion in FDM of semi-crystalline polymers: A simulation study. Polymers (Basel), 14(13). https://doi.org/10.3390/polym14132746
Sola, A., et al. (2023). Open challenges in tensile testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication. Polymer Testing, 117, 107859. https://doi.org/10.1016/j.polymertesting.2022.107859
Stander, N. A., Basudhar, A., Roux, W., Witowski, K., Eggleston, T., Goel, T., & Craig, K. (2019). LS-OPT user’s manual: A design optimization and probabilistic analysis ability for the engineering analyst. Livermore Software Technology Corporation. https://www.lsoptsupport.com/documents/manuals/ls-opt/lsopt_60_manual.pdf
Tessarin, A., Zaccariotto, M., Galvanetto, U., & Stocchi, D. (2022). A multiscale numerical homogenization-based method for the prediction of elastic properties of components produced with the fused deposition modelling process. Results in Engineering, 14, 100409. https://doi.org/10.1016/j.rineng.2022.100409
Trofimov, A., Le Pavic, J., Pautard, S., Therriault, D., & Levesque, M. (2022). Experimentally validated modeling of the temperature distribution and the distortion during the fused filament fabrication process. Additive Manufacturing, 54, 102693. https://doi.org/10.1016/j.addma.2022.102693
Voce, E. (1948) The Relationship Between Stress and Strain for Homogeneous Deformation. Journal of the Institute of Metals, 74, 537-562.
Wickramasinghe, S., Do, T., & Tran, P. (2020). FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers, 12(7), 1529. https://doi.org/10.3390/polym12071529
Yu, M., et al. (2023). The effect of cooling rates on thermal, crystallization, mechanical and barrier properties of rotational molding polyamide 11 as the liner material for high-capacity high-pressure vessels. Molecules, 28(6), 2425. https://doi.org/10.3390/molecules28062425
Zeybek, M. K., Güden, M., & Taşdemirci, A. (2023). The effect of strain rate on the compression behavior of additively manufactured short carbon fiber-reinforced polyamide composites with different layer heights, infill patterns, and built angles. Journal of Materials Engineering and Performance, 14. https://doi.org/10.1007/s11665-023-07918-1
Zhang, W., et al. (2018). Interfacial bonding strength of short carbon fiber/acrylonitrile-butadiene-styrene composites fabricated by fused deposition modeling. Composites Part B: Engineering, 137, 51–59. https://doi.org/10.1016/j.compositesb.2017.11.018
Zhao, Y., Chen, Y., & Zhou, Y. (2019). Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses. Materials & Design, 181, 108089. https://doi.org/10.1016/j.matdes.2019.108089
Zouaoui, M., Gardan, J., Lafon, P., Makke, A., Labergere, C., & Recho, N. (2021). A finite element method to predict the mechanical behavior of a pre-structured material manufactured by fused filament fabrication in 3D printing. Applied Sciences, 11(11). https://doi.org/10.3390/app11115075
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Jorge Steban Ramírez-Jiménez, Luis Miguel Navarrete-López, Jefferson Alberto Porras-Reyes, José Ezequiel Naranjo-Robalino

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai